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An ensemble penalized regression method
for multi-ancestry polygenic risk prediction

Jingning Zhang 1 , Jianan Zhan2, Jin Jin 3, Cheng Ma4, Ruzhang Zhao1,
Jared O’Connell2, Yunxuan Jiang2, 23andMe Research Team*,
Bertram L. Koelsch2, Haoyu Zhang 5 & Nilanjan Chatterjee 1,6

Great efforts are being made to develop advanced polygenic risk scores (PRS)
to improve the prediction of complex traits and diseases. However, most
existing PRS are primarily trained on European ancestry populations, limiting
their transferability to non-European populations. In this article, we propose a
novel method for generating multi-ancestry Polygenic Risk scOres based on
enSemble of PEnalized Regression models (PROSPER). PROSPER integrates
genome-wide association studies (GWAS) summary statistics from diverse
populations to develop ancestry-specific PRS with improved predictive power
for minority populations. The method uses a combination of L1 (lasso) and
L2 (ridge) penalty functions, a parsimonious specification of the penalty
parameters across populations, and an ensemble step to combine PRS gen-
erated across different penalty parameters. We evaluate the performance of
PROSPER and other existing methods on large-scale simulated and real data-
sets, including those from 23andMe Inc., the Global Lipids Genetics Con-
sortium, and All of Us. Results show that PROSPER can substantially improve
multi-ancestry polygenic prediction compared to alternativemethods across a
wide variety of genetic architectures. In real data analyses, for example,
PROSPER increased out-of-sample prediction R2 for continuous traits by an
average of 70% compared to a state-of-the-art Bayesian method (PRS-CSx) in
the African ancestry population. Further, PROSPER is computationally highly
scalable for the analysis of large SNP contents and many diverse populations.

Tens of thousands of single nucleotide polymorphisms (SNP) have
beenmapped to human complex traits and diseases through genome-
wide association studies (GWAS)1,2. Though each SNP only explains a
small fraction of variation of the underlying phenotype, polygenic risk
scores (PRS), which aggregate the genetic effects of many loci, can
have a substantial ability to predict traits and stratify populations by
underlying disease risks3–12. However, as existing GWAS to date have

been primarily conducted in European ancestry populations (EUR)13–16,
recent studies have consistently shown that the transferability of EUR-
derived PRS to non-EUR populations often is suboptimal and in par-
ticular poor for African Ancestry populations17–21.

Despite growing efforts of conducting genetic research on min-
ority populations22–25, the gap in sample sizes between EUR and non-
EUR populations is likely to persist in the foreseeable future. As the
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performance of PRS largely depends on the sample size of training
GWAS3,26, using single-ancestry methods27–31 to generate PRS for a
minority population, using data from that population alone may not
achieve ideal results. Toaddress this issue, researchershavedeveloped
methods for generating powerful PRS by borrowing information
across diverse ancestry populations32. For example, Weighted PRS33

combines single-ancestry PRS generated from each population using
weights that optimize performance for a target population. Bayesian
methods have also been proposed that generate improved PRS for
each population by jointly modeling the effect-size distribution across
populations34,35. Recently, our group proposed a new method named
CT-SLEB21, which extends the clumping and thresholding (CT)36

method to multi-ancestry settings. The method uses an empirical-
Bayes (EB) approach to estimate effect sizes by borrowing information
across populations and a super learningmodel to combine PRSs under
different tuning parameters. However, the optimality of the methods
depends on many factors, including the ability to account for hetero-
geneous linkage disequilibrium (LD) structure across populations and
the adequacy of the models for underlying effect-size distribution3,26.
In general, our extensive simulation studies and data analyses suggest
that no method is uniformly the most powerful, and exploration of
complementary methods will often be needed to derive the optimal
PRS in any given setting21.

In this article, we propose a novel method for generating multi-
ancestry Polygenic Risk scOres based on an enSemble PEnalized
Regression (PROSPER) using GWAS summary statistics and validation
datasets across diverse populations. The method incorporates L1

penalty functions for regularizing SNP effect sizes within each popu-
lation, an L2 penalty function for borrowing information across
populations, and a flexible but parsimonious specification of the
underlying penalty parameters to reduce computational time. Further,
instead of selecting a single optimal set of tuning parameters, the
method combines PRS generated across different populations and
tuning parameters using a final ensemble regression step.We compare
the predictive performance of PROSPER with a wide variety of single-
andmulti-ancestrymethods using simulation datasets fromour recent
study21 across five populations (EUR, African (AFR), Ad Mixed Amer-
ican (AMR), East Asian (EAS), and South Asian (SAS))21. Furthermore,
we evaluate these methods using a variety of real datasets from
23andMe Inc. (23andMe), the Global Lipids Genetics Consortium
(GLGC)37, All of Us (AoU)38, and theUKBiobank study (UKBB)39. Results
from these analyses indicate that PROSPER is a highly promising
method for generating the most powerful multi-ancestry PRS across
diverse types of complex traits. Computationally, PROSPER is also
exceptionally scalable compared to other advanced methods.

Results
Method overview
PRSOSPER is a method designed to improve prediction performance
for PRS across distinct ancestral populations by borrowing informa-
tion across ancestries (Fig. 1). It can integrate large EUR GWAS with
smaller GWAS from non-EUR populations. Ideally, individual-level
tuning data are needed for all populations, because the method needs
optimal parameters from single-ancestry analysis as an input; however,
evenwhendata is only available for a target population, PRSOSPER can
still be performed, and the PRS will be optimized and validated toward
the target population. Themethod can account for population-specific
genetic variants, allele frequencies, and LD patterns and use compu-
tational techniques for penalized regressions for fast implementation.

PROSPER
Assuming a continuous trait, we first consider a standard linear
regression model for underlying individual-level data for describing
the relationship between trait values and genome-wide genetic var-
iants across M distinct populations. Let Yi denote the ni × 1 vector of

trait values, Xi denote the ni ×pi genotype matrix, βi denote the pi × 1
vector of SNP effects, and ϵi denote the ni × 1 vector of random errors
for the ith population. We assume underlying linear regression models
of the form Yi =Xiβi + ϵi,i= 1, . . .M; and intend to solve the linear
regression system by least square with a combination of L1 (lasso)

40

and L2 (ridge)41 penalties in the form

X
1≤ i≤M

1
ni

ðYi � XiβiÞT ðYi � XiβiÞ

+
X
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where λi,i= 1, . . . ,M are the population-specific tuning parameters
associated with the lasso penalty; β

si1 i2
i1

and β
si1 i2
i2

denote the vectors of
effect-sizes for SNPs for the i1-th and i2-th populations, respectively,
restricted to the set of shared SNPs (si1i2 ) across the pair of the
populations; and ci1i2 ,1≤ i1<i2 ≤M are the tuning parameters associated
with the ridge penalty imposing effect-size similarity across pairs of
populations.

In the above, the first part,
P

1≤ i ≤M2λikβik11, uses a lasso penalty.
Lasso can produce sparse solution40 and recent PRS studies that have
implemented the lasso penalty in the single-ancestry setting have
shown its promising performance28,29. The second part,P

1 ≤ i1<i2 ≤Mci1 i2
kβsi1 i2

i1
� β

si1 i2
i2

k2
2
, uses a ridgepenalty. As it hasbeenwidely

shown that the causal effect sizes of SNPs tend to be correlated across
populations42,43, we propose to use the ridge penalty to induce genetic
similarity across populations. Compared to the fused lasso44, which
uses lasso penalty for the differences, we use ridge penalty instead,
which allows a small difference in SNP effects across populations
rather than truncating them to zero. The solutions for population-
specific effect size using the combined lasso and ridge penalties can be
sparse.

The estimate of βi,i= 1, . . . ,M in the above individual-level linear
regression systems can be obtained by minimizing the above least
square objective function. Following the derivation of lassosum28, a
single-ancestry method for fitting the lasso model to GWAS summary
statistics data, we show that the objective function for individual-level
data can be approximated using GWAS summary statistics and LD
reference matrices by substituting 1

ni
X
T

i
Xi by Ri, where Ri is the esti-

mated LDmatrix basedon a reference sample from the i-th population,
and 1

ni
XT
i yi, by ri, where ri is the GWAS summary statistics in the i-th

population. Therefore, the objective function of the summary-level
model can be written as

X
1 ≤ i≤M

ðβT
i ðRi + δiIÞβi � 2βT

i ri +2λikβik11Þ+
X
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� β
si1 i2
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k2
2

where the additional tuning parameters δi, i= 1, . . . ,M, are introduced
for regularization of the LDmatrices across the different populations29.
For a fixed set of tuning parameters, the above objective function can
be solved using fast coordinate descent algorithms45 by iteratively
updating each element of βi, i= 1, . . . ,M (see “Obtain PROSPER solu-
tion” under “Methods”).

Reducing tuning parameters
For the selection of tuning parameters, we assume we have access to
individual-level data across the different populations which are
independent of underlying GWAS from which summary statistics are
generated. The above setting involves three sets of tuning para-
meters, δi

� �M
i = 1, λi

� �M
i = 1, and fci1i2 g1≤ i1<i2 ≤M , totaling to the number of

M +M + M M�1ð Þ
2 . As grid search across many combinations of tuning

parameter values can be computationally intensive, we propose to
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reduce the search range by a series of steps. First, we use lassosum229

to analyze GWAS summary statistics and tuning data from each
ancestry population by itself and obtain underlying values of optimal
tuning parameters, (δ0

i , λ0i ) for i= 1, . . . ,M; if tuning data is only
available for the target population, the (δ0

i , λ
0
i ) for other populations

can beoptimized towards the target population. Forfitting PROSPER,
we fix δi = δ

0
i for i= 1, . . . ,M as these are essentially used to regularize

estimates of population-specific LD matrices. We note that the opti-
mal λi

� �M
i= 1 depend on sample sizes of underlying training GWAS

(Supplementary Fig. 1), and thus should not be arbitrarily assumed to
be equal across all populations. Considering that the optimal tuning
parameters associated with theL1 penalty function from the single-
ancestry analyses should reflect the characteristics of GWAS data,
which includes underlying sparsity of effect sizes and sample sizes,
we propose to specify the L1-tuning parameters in PROSPER as

λi = λλ
0
i , i.e., they are determined by the corresponding tuning para-

meters from the ancestry-specific analysis except for the constant
multiplicative factor λ. Finally, for computational feasibility, we fur-
ther assume that effect sizes across all pairs of populations have a
similar degree of homogeneity and thus set all fci1i2 g1≤ i1<i2 ≤M to be
equal to c. We will later discuss this assumption and perform a sen-
sitivity analysis (see Discussion). By using the above assumptions, the
objective function to minimize with respect to βi,i= 1, . . . ,M,
becomes

X
1≤ i≤M

ðβT
i ðRi + δ

0
i IÞβi � 2βT

i ri +2λλ
0
i kβik11Þ+

X
1≤ i1<i2 ≤M

ckβsi1 i2
i1

� β
si1 i2
i2

k2
2

where λ and c are the only two tuning parameters needed for lasso
penalty and genetic similarity penalty, respectively.

Fig. 1 | Detailedflowchart ofPROSPER.The analysis ofM populations inPROSPER
involves three key steps: (1) Separate single-ancestry analysis for all populations
i= 1, . . . ,M; (2) Joint analysis across populations using penalized regression; (3)
Ensemble regression. In step 1, the training GWAS data is used to train lassosum2
models, and the tuning data is used to obtain the optimal tuning parameters in a
single-ancestry analysis. In step 2, the training GWAS and the optimal tuning
parameter values from step 1 are used to train the joint cross-population penalized

regression model, and obtain solution βλ,c,i for each λ and c. In step 3, the tuning
data is used to train the super learning model for the ensemble of PRSs computed
from the solutions in step 2, PRSλ,c,i =Xβλ,c,i. The final PRS is computed as
PRS=X

P
wλ,c,iβλ,c,i

� �
, wherewλ,c,i are the weights from the super learning model.

Refer to the “MethodOverview” section in themain text for a full explanation of all
notations in the flowchart.
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Ensemble
Using an ensemble method to combine PRS has been shown to be
promising in CT-type methods as opposed to picking an optimal
threshold21,36. In general, a specific form of the penalty function, or
equivalently a model for prior distribution in the Bayesian framework,
may not be able to adequately capture the complex nature of the
underlying distribution of the SNPs across diverse populations. We
conjecture that when effect size distribution is likely to be mis-speci-
fied, an ensemblemethod, which combines PRS across different values
of tuning parameters instead of choosing one optimal set, is likely to
improve prediction. Therefore, as a last step, we obtain the final
PROSPER model using an ensemble method, super learning46–48,
implemented in the SuperLearner R package, to combine PRS gener-
ated from various tuning parameter settings and optimized using
tuning data from the target population. The super learner we use here
was based on three supervised learning algorithms, including lasso40,
ridge41, and linear regression (see “Methods”).

Results
Methods comparison on simulated data
We conducted simulation analyses on continuous traits under various
genetic architectures21 to evaluate the performance of different
methods that can be categorized into five groups: single-ancestry
methods trained from target GWAS data (single-ancestry method),
single-ancestrymethods trained fromEURGWASdata (EUR PRS-based
method), simple multi-ancestry methods by weighting single-ancestry
PRS (weighted PRS), recently published multi-ancestry methods
(existing multi-ancestry methods), and our proposed method PROS-
PER. Single-ancestry methods include CT36, LDpred230, and
lassosum229. Existing multi-ancestry methods include PRS-CSx34 and
CT-SLEB21. All of the methods were implemented using the latest
available version of the underlying software. The performance of the
methods is evaluated by R2 measured on validation samples indepen-
dent of training and tuning datasets. Analyses in this and the following
sections are restricted to a total of 2,586,434 SNPs, which are included
in either HapMap 3 (HM3)49 or the Multi-Ethnic Genotyping Arrays
(MEGA) chips array50. LD reference samples for all five ancestries, EUR,
AFR, AMR, EAS, and SAS, in this and the following sections, are from
1000 Genomes Project (Phase 3)51 (1000G).

The results (Fig. 2, Supplementary Figs. 2–5, and Supplementary
Data 1–5) show that multi-ancestry methods generally exhibit superior
performance compared to single-ancestry methods. Weighted PRS
generated from methods modeling LD (LDpred2 and lassosum2) can
lead to anoticeable improvement in performance (greenbars in Fig. 2).
Notably, PROSPER shows robust performance uniformly across dif-
ferent scenarios. When the sample size of the target non-EUR popu-
lation is small (Ntarget = 15K) (Fig. 2a), PROSPER has comparable good
performance with other multi-ancestry methods, such as weighted
LDpred2 and PRS-CSx, under a high degree of polygenicity
(pcausal =0:01). However, under the same sample size setting and lower
polygenicity (pcausal = 0.001 and 5 × 10−4), PRS-CSx and CT-SLEB out-
perform PROSPER, with the margin of improvement increasing as the
strength of negative selection decreases (strong negative selection in
Fig. 2a, mild negative selection in Supplementary Fig. 2a, and no
negative selection in Supplementary Fig. 3a). When the sample size of
the target population is large (Ntarget =80K) (Fig. 2b and Supplemen-
tary Figs. 2–5b), PROSPER almost uniformly outperforms all other
methods, particularly for the AFR population, and weighted LDpred2
remains a close competitor.

We further compare the computational efficiency of PROSPER in
comparison to PRS-CSx, the state-of-the-art Bayesianmethod available
for generating multi-ancestry PRS. We train PRS models for the two
methods using simulated data for chromosome 22 using a single core
with AMD EPYC 7702 64-Core Processors running at 2.0 GHz. We
observe (Supplementary Data 6) that PROSPER is 37 times faster than

PRS-CSx (3.0 vs. 111.1minutes) in a two-ancestry analysis including AFR
and EUR; and 88 times faster (6.8 vs. 595.8minutes) in the analysis of
all five ancestries. The memory usage for PRS-CSx is about 2.8 times
smaller than PROSPER (0.78 vs. 2.24Gb in two-ancestry analysis, and
0.84 vs. 2.35 Gb in five-ancestry analysis).

23andMe data analysis
We applied various methods to GWAS summary statistics available
from the 23andMe, Inc. to predict two continuous traits, heart meta-
bolic disease burden and height; as well as five binary traits, any car-
diovascular disease (any CVD), depression, migraine diagnosis,
morning person, and sing back musical note (SBMN). The datasets are
available for all five ancestries, African American (AA), Latino, EAS,
EUR, and SAS. The methods are tuned and validated on a set of inde-
pendent individuals of the corresponding ancestry from the 23andMe
participant cohort (see the section of “Real data analysis” under
“Methods” for data description, and Supplementary Data 7 and 8 for
sample sizes used in training, tuning and validation). In an earlier
version of the analysis, we had analyzed the data using anolder version
LDpred2 in its package of bigsnpr (version 1.8) that was available when
the project was initiated. Quality control analysis following comments
from one of the reviewers indicated problem with convergence of
those results. As we were not able to further update the analysis using
the most recent version of the LDpred2 in its package of bigsnpr
(version 1.12) due to time constraint of the 23andMe team, we did not
report results from LDpred2 and its corresponding EUR and weighted
methods in this section of 23andMe data analysis.

From the analysis of two continuous traits (Fig. 3 and Supple-
mentary Data 9), we observe that lassosum2 and its related methods
(EUR lassosum2 and weighted lassosum2) generally perform better
than CT and its related methods. On the basis of the advantage of
lassosum2, PROSPER further improves the performance, and for most
of the settings, outperforms all alternative methods, including PRS-
CSx and CT-SLEB. PROSPER demonstrates particularly remarkable
improvement for both traits in AA and Latino (26.9% relative
improvement in R2 over the second-best method on average, yellow
cells in Supplementary Data 10) (first two panels in Fig. 3a, b). For EAS
and SAS, PROSPER is slightly better than other methods, except for
heart metabolic disease burden of SAS (the last panel in Fig. 3a), which
has the smallest sample size (~20K).

The results from the analysis of the binary traits (Fig. 4 and Sup-
plementary Data 9) show that PROSPER generally exhibits better per-
formance (7.8% and 12.3% relative improvement in logit-scale variance
(see “Methods”) over CT-SLEB and PRS-CSx, respectively, averaged
across populations and traits) (blue and red cells, respectively, in
Supplementary Data 10). A similar trend is observed for the analyses of
AA and Latino, where PROSPER usually has the best performance (first
two panels in Fig. 4a–e). In general, no single method can uniformly
outperformothers.Weighted lassosum2has outstandingperformance
for depression (Fig. 4b), while PROSPER is superior formorning person
(Fig. 4d). PRS-CSx shows a slight improvement in the analysis of
migraine diagnosis for EAS populations (last second panel in Fig. 4c),
and CT-SLEB performs the best in the analysis of any CVD for SAS
population (last panel in Fig. 4a).

GLGC and AoU data analysis
Considering the uncommonly huge sample sizes from 23andMe, we
further applied alternative methods for the analysis of two other real
datasets, GLGC and AoU. The GWAS summary statistics fromGLGC for
four blood lipid traits, high-density lipoprotein (HDL), low-density
lipoprotein (LDL), log-transformed triglycerides (logTG), and total
cholesterol (TC), are publicly downloadable and available for all five
ancestries, African/Admixed African, Hispanic, EAS, EUR, and SAS (see
“Methods"' for data description, and Supplementary Data 7 for sample
sizes). Further, we generated GWAS summary statistics data from the
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AoU study for two anthropometric traits, body mass index (BMI) and
height, for individuals from three ancestries, AFR, EUR, and Latino/
Admixed American (see “Methods” for data description, and Supple-
mentary Data 7 for sample sizes). Both the blood lipid traits and
anthropometric traits have corresponding phenotype data available in
the UKBB, which we use to perform tuning and validation (see “Real
data analysis” under “Methods” for the ancestry composition, and
SupplementaryData 8 for sample sizes). Given the limited sample sizes
of genetically inferred AMR ancestry individuals in UKBB, we do not

report the performance of PRS on AMR individuals in UKBB. In these
analyses, we implemented LDpred2method using the latest version of
the software (version 1.12).

Results from analysis of four blood lipid traits (Fig. 5 and Sup-
plementary Data 11) from GLGC and UKBB show that weighted PRS
methods substantially outperform alternative methods. In particular,
we observe that the weighted lassosum2 outperforms the other two
weighted methods. Furthermore, our proposed method, PROSPER,
shows improvement over weighted lassosum2 in both AFR and SAS

Fig. 2 | Performance comparison of alternative methods on simulated data
generated with different sample sizes and genetic architectures under strong
negative selection and fixed common-SNP heritability. Data are simulated for
continuous phenotype under a strong negative selectionmodel and three different
degrees of polygenicity (top panel: pcausal =0:01, middle panel: pcausal =0:001, and
bottom panel: pcausal = 5 × 10

�4). Common SNP heritability is fixed at 0.4 across all
populations, and the correlations in effect sizes for share SNPs between all pairs of
populations is fixed at 0.8. The sample sizes for GWAS training data are assumed to

be a n = 15,000, and b n = 80,000 for the four non-EUR target populations; and is
fixed at n = 100,000 for the EUR population. PRS generated from all methods are
tuned inn = 10,000 samples, and then tested inn = 10,000 independent samples in
each target population. The PRS-CSx package is restricted to SNPs from HM3,
whereas other alternative methods use SNPs from either HM3 orMEGA. Bars in the
figure show the performance of R2 for each method in each dataset. Colors are
described on the right side of the figure. Source data are provided in Supplemen-
tary Data 1.
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(13.5% and 12.3% relative improvement in R2, respectively, averaged
across traits) (green and orange cells, respectively, in Supplementary
Data 12), but not in EAS. Notably, PROSPER outperforms PRS-CSx and
CT-SLEB in most scenarios (34.2% and 37.7% relative improvement in
R2, respectively, averaged across traits and ancestries) (blue and red
cells, respectively, in Supplementary Data 12), with the improvement
being particularly remarkable for the AFR population (Fig. 5) in which
PRS development tends to be the most challenging.

The results from AoU and UKBB (Fig. 6 and Supplementary
Data 13) show that PROSPER generates themost predictive PRS for the
two analyzed anthropometric traits for the AFR population. It appears
that Bayesian and penalized regression methods that explicitly model
LD tend to outperform corresponding CT-type methods (CT, EUR CT,
and weighted CT) which excluded correlated SNPs. Among weighted
methods, both LDpred2 and lassosum2 showmajor improvement over
the corresponding CT method. Further, for both traits, PROSPER
shows remarkable improvement over the best of the weighted meth-
ods and the twoother advancedmethods, PRS-CSx andCT-SLEB (91.3%
and 76.5% relative improvement in R2, respectively, averaged across
the two traits) (blue and red cells, respectively, in Supplementary
Data 14).

Gain from PROSPER over lassosum2
To investigate whether the additional gain from PROSPER arises from
modeling shared effects across populations or from combining PRS
with super learning, we further employ a super learning step for las-
sosum2 (termed as advanced weighted lassosum2) as a point of
comparison. The results in simulations (Supplementary Figs. 6–10 and
Supplementary Data 15) indicate that PROSPER consistently has more
advantage than the advanced weighted lassosum2 in all scenarios. The
results in real data (Supplementary Figs. 11 and 12 and Supplementary
Data 16) show that the performance of the two methods depends on
traits and ancestries. PROSPER has comparable performance with
advanced weighted lassosum2 in AFR; while PROSPER outperforms
advanced weighted lassosum2 almost in all scenarios in SAS and EAS.
In summary, PROSPER has 41.1% relative improvement in R2 over
advanced weighted lassosum2 on average across all ancestries and all
traits in GLGC and AoU. We were not able to perform this analysis in
23andMe due to time constraint of the 23andMe team.

Discussion
In this article, we propose PROSPER as a powerful method that can
jointlymodel GWAS summary statistics frommultiple ancestries by an

Fig. 3 | Performance comparison of alternative methods for prediction of two
continuous traits in 23andMe. We analyzed two continuous traits, a heart meta-
bolic disease burden and b height. PRS are trained using 23andMe data that
available for five populations: African American, Latino, EAS, EUR, and SAS, and
then tuned in an independent set of individuals from 23andMe of the corre-
sponding ancestry. Performance is reported based on adjusted R2 accounting for
sex, age and PC1-5 in a held-out validation sample of individuals from 23andMe of
the corresponding ancestry. The ratio of sample sizes for training, tuning and
validation is roughly about 7:2:1, and detailed numbers are in Supplementary

Data 7 and 8. The PRS-CSx package is restricted to SNPs from HM3, whereas other
alternative methods use SNPs from either HM3 or MEGA. LDpred2 and its corre-
sponding EUR andweightedmethods are excluded to avoidmisinterpretation, as a
result of our collaboration restrictions with 23andMe, Inc., preventing us from
updating thesemethods to the latest version of its package. Bars in the figure show
the performance of adjusted R2 for each method in each dataset. Colors are
described on the right side of the figure. Source data are provided in Supplemen-
tary Data 9.
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ensemble of penalized regressionmodels to improve the performance
of PRS across diverse populations.We show thatPROSPER is a uniquely
promising method for generating powerful PRS in multi-ancestry set-
tings through extensive simulation studies, analysis of real datasets
across a diverse type of complex traits, and considering the most
recent developments of alternative methods. Computationally, the
method is an order of magnitude faster compared to PRS-CSx34, an
advanced Bayesian method, and comparable to CT-SLEB21, which
derives the underlying PRS in closed forms. We have packaged the
algorithm into a command line tool based on the R programming
language (https://github.com/Jingning-Zhang/PROSPER).

We compare PROSPER with a number of alternative simple and
advanced methods using both simulated and real datasets. The simu-
lation results show that PROSPER generally outperformsother existing
multi-ancestry methods when the target sample size is large (Fig. 2b).
However when the sample size of the target population is small
(Fig. 2a), no method performed uniformly the best. In this setting,
when the degree of polygenicity is the lowest (pcausal = 5× 10

�4), CT-
SLEB outperforms other methods by a noticeable margin, and PROS-
PER performs slightly worse than PRS-CSx. Simulations also show that
in the scenario of a highly polygenic trait (pcausal =0:01), irrespective of
sample size, both weighted lassosum2 and PROSPER tend to exhibit

Fig. 4 | Performance comparison of alternative methods for prediction of five
binary traits in 23andMe.We analyzed five binary traits, a any CVD, b depression,
c migraine diagnosis, d morning person, and e SBMN. PRS are trained using
23andMe data that available for five populations: African American, Latino, EAS,
EUR, andSAS, and then tuned in an independent set of individuals from23andMeof
the corresponding ancestry. Performance is reported based on adjusted AUC
accounting for sex, age, PC1-5 in a held-out validation sample of individuals from
23andMe of the corresponding ancestry. The ratio of sample sizes for training,
tuning and validation is roughly about 7:2:1, and detailed numbers are in

Supplementary Data 7 and 8. The PRS-CSx package is restricted to SNPs fromHM3,
whereas other alternative methods use SNPs from either HM3 or MEGA. LDpred2
and its corresponding EUR and weighted methods are excluded to avoid mis-
interpretation, as a result of our collaboration restrictions with 23andMe, Inc.,
preventing us from updating these methods to the latest version of its package.
Bars in the figure show the performance of adjusted AUC for each method in each
dataset. Colors are described on the right side of the figure. Source data are pro-
vided in Supplementary Data 9.
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superiority compared to all other methods. In terms of computational
time, PROSPER is an order of magnitude faster than PRS-CSx in a five-
ancestry analysis. The memory usage for PRS-CSx is smaller than
PROSPER, but both are acceptable (Supplementary Data 6).

We observe that for the analysis of both continuous and binary
traits using 23andMe Inc. data, PROSPER demonstrates a substantial
advantage over all other methods for the AA and Latino populations,
which have the largest sample sizes among all minority groups. The
result is consistent with the superior performance of PROSPER
observed in simulation settings when the sample size of the target
population is large. However, it is worth noting that even for the two
other populations, EAS and SAS, which have much smaller sample
sizes, PROSPER still performs the best in half of the settings (the last
two panels in Figs. 3a, b and 4a–e). For the prediction of blood lipid
traits, PROSPER and weighted PRSmethods perform noticeable better
than other alternative methods. For the analysis of two anthropo-
metric traits using training data from AoU, we observe that methods

that explicitly model and account for LD differences (e.g., lassosum2,
LDpred2, and their corresponding weighted methods) generally
achieve higher predictive accuracy than CT-based methods which
discard correlated SNPs. The result is consistent with what we have
observed in simulation settings under extremepolygenic architectures
as expected for complex traits like height and BMI. In addition, we
observe significant improvement in PRS performance using PROSPER
over advanced weighted lassosum2 method which is allowed to
incorporate a super learning step in lassosum2. This suggests that the
additional gain of PROSPER arises frommodeling shared effects across
populations through the L2-penalty function.

PROSPER, while showing promising results in our simulations and
real-data analyses, does have several limitations. First, when the sam-
ple size for the training sample for a target population is small, parti-
cularly for traits with lowpolygenicity, themethodmay not perform as
well as some of the other existing methods (Fig. 2a). In this specific
scenario where the number of true causal variants is small, a potential

Fig. 5 | Performance comparison of alternative methods for prediction of four
blood lipid traits (GLGC-training and UKBB-tuning/validation). We analyzed
four blood lipid traits, aHDL,b LDL, c logTG, and d TC. PRS are trained using GLGC
data that available for five populations: admixed African or African, East Asian,
European, Hispanic, and South, and then tuned in individuals from UKBB of the
corresponding ancestry: AFR, EAS, EUR, AMR, and SAS (see “Real data analysis”
under “Methods” for ancestry composition). Performance is reported based on
adjusted R2 accounting for sex, age, PC1-10 in a held-out validation sample of

individuals from UKBB of the corresponding ancestry. Sample sizes for training,
tuning and validation data are in Supplementary Data 7 and 8. Results for AMR are
not included due to the small sample size of genetically inferred AMR ancestry
individuals in UKBB. The PRS-CSx package is restricted to SNPs fromHM3,whereas
other alternative methods use SNPs from either HM3 or MEGA. Bars in the figure
show the performance of adjusted R2 for each method in each dataset. Colors are
described on the right side of the figure. Source data are provided in Supplemen-
tary Data 11.
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reason for the suboptimalperformanceofPROSPER is thebias induced
by lasso. This inspires future work of extending PROSPER to adaptive
lasso52 for unbiased estimation and other forms of penalty functions
for sparser solutions. Second, the use of a super learning step in
PROSPER can lead to poorer performance compared to weighted las-
sosum2 when the sample size for the tuning dataset is not adequately
large. In the analysis of lipid traits for EAS, for example, we observe
lower predictive accuracy of PROSPER than weighted lassosum2 (the
middle panel in Fig. 5b, d). This can be attributed to overfitting in the
tuning sample, as the number of tuning samples of EAS origin in the
UKBB is only ~1000, while the number of PRSs combined in the super
learning step is close to 500. In this scenario, we suggest comparing
the performance of the ensemble PRS with that without the ensemble
step, as the latter one will be more resilient to overfitting. We con-
ducted simulation analyses to further explore the ideal sample size for
tuning (Supplementary Fig. 13). Generally, a tuning sample size within
the range of 1000–3000 is adequate for continuous traits. Third, we
used a constant tuning parameter for the genetic similarity penalty,
disregarding varying genetic distances amongpopulations53. However,
introducing additional tuning parameters could result in both

computational challenges and numerical instability. We have investi-
gated this by analyzing GLGC data (see Supplementary Data 17 and
“Methods”), adding an extra tuning parameter to accommodate
adaptable distances between the AFR population and others. Results
indicate a disproportionate increase in computational load (the last
column in Supplementary Data 17) relative to the marginal enhance-
ment in predictive accuracy, and a potential of instability and over-
fitting (gray cells in Supplementary Data 17). Lastly, the framework is
modeled on a standardized genotype scale characterized by strong
negative selection; however, there could be diverse genetic archi-
tectures in reality. To address this limitation, models could be exten-
ded to varying degrees of negative selection by multiplied by
exponentiations of allele frequencies, as discussed in ref. 21.

PROSPER and a number of other recent methods have been
developed for modeling summary statistics data across discrete
populations typically defined by self-reported ancestry information.
Increasing sample size for reference sample sizes for various popula-
tions well-matched with those providing training datasets can further
enhance the performance of PROSPER and other methods that expli-
citly incorporates LD information into modeling. Further, there is an

Fig. 6 | Performance comparison of alternative methods for prediction of two
anthropometric traits (AoU-training and UKBB-tuning/validation).We ana-
lyzed two anthropometric traits, aBMI andbheight. PRS are trainedusingAoUdata
that are available for three populations: African, Latino/Admixed American, and
European and then tuned in individuals from UKBB of the corresponding ancestry:
AFR, AMR, and EUR (see “Real data analysis” under “Methods” for ancestry com-
position). Performance is reported based on adjusted R2 accounting for sex, age,
PC1-10 in a held-out validation sample of individuals from UKBB of the corre-
sponding ancestry. Sample sizes for training, tuning and validation data are in

Supplementary Data 7 and 8. Results for AMR are not included due to the small
sample size of genetically inferred AMR ancestry individuals in UKBB. The number
of SNPs analyzed in AoU analyses is much smaller than other analyses because the
GWAS fromAoU is on array data only (see Supplementary Data 7 for the number of
SNPs). The PRS-CSx package is restricted to SNPs from HM3, whereas other alter-
native methods use SNPs from either HM3 or MEGA. Bars in the figure show the
performance of adjusted R2 for each method in each dataset. Colors are described
on the right side of the figure. Source data are provided in Supplementary Data 13.
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emerging need to consider the underlying continuum of genetic
diversity across populations in both the development and imple-
mentational of PRS in diverse populations in the future54. Toward this
goal, a recent method called GAUDI55 has been proposed based on the
fused lasso penalty for developing PRS in admixed population using
individual-level data. While GAUDI shares similarities with PROSPER in
terms of the use of the lasso-penalty function, the two methods are
distinct in terms of the specification of tuning parameters and use of
the ensemble step. Ourmodel specification of PROSPERmakes it easily
amendable to handle continuous genetic ancestry data, but further
research is needed for scalable implementation of the method with
individual-level data and extensive empirical evaluations.

To conclude, we have proposed PROSPER, a statistically powerful
and computationally scalable method for generating multi-ancestry
PRS using GWAS summary statistics and additional tuning and vali-
dation datasets across diverse populations. While no method is uni-
formly powerful in all settings, we show that PROSPER is the most
robust among a large variety of recent methods proposed across a
wide variety of settings. As individual-level data from GWAS of diverse
populations becomes increasingly available, PROSPER and other
methods will require additional considerations for incorporating
continuous genetic ancestry information, both global and local, into
the underlying modeling framework.

Methods
We confirm that our research complies with all relevant ethical reg-
ulations. All individuals from 23andMe included have provided
informed consent and answered surveys online according to our
human subject protocol reviewed and approved by Ethical & Inde-
pendent Review Services, a private institutional review board (http://
www.eandireview.com). All participants from UK Biobank provided
written informed consent (more information is available at https://
www.ukbiobank.ac.uk/2018/02/gdpr/). The information of individuals
fromAll ofUS included in our analyses has been collected according to
All of Us Research Program Operational Protocol (https://allofus.nih.
gov/sites/default/files/aou_operational_protocol_v1.7_mar_2018.pdf).
The detailed consent process of All of Us is described on https://
allofus.nih.gov/about/protocol/all-us-consent-process.

Data preparation and formatting in PROSPER
We match SNPs and their alleles in GWAS summary statistics and
genotypes of individuals for tuning and validation purposes to that in
1000G reference data (phase 3)51. To simplify computing huge-
dimensional LD matrix, we use existing LD block information from
EUR28 to divide the whole genome, and assume the blocks to be
independent. We use PLINK1.956 with flag --r bin4 to compute the LD
matrix within each block in each ancestry for common SNPs (MAF >
0.01) either in HM349 or the MEGA50. For SNPs not common in all
populations, we only model them in the populations where they are
common; if a SNP is population-specific that is only common in one
population, we model it only using the lasso penalty without the
genetic similarity penalty. The parameter path of the tuning parameter
λ for the scale factor in lasso penalty is set to a sequence evenly spaced

on a logarithmic scale from λmax = min
1≤ i≤m

max
1≤ k ≤p

rikj jð Þ
λ0i

 !
to

λmin =0:001 × λmax which is set to guarantee non-zero solutions, where
rik is the GWAS summary statistics for the k-th SNP in the i-th popu-

lation, and λ0i is the underlying values of optimal tuning parameter λ
for the i-th population. The parameter path for the tuning parameter c
for the genetic similarity penalty is set to a sequence evenly spaced on
aquad-root scale from cmin = 2 to cmax = 100, i.e., seq(cmin^(1/4), cmax^(1/
4), length.out = 10)^4 using R command. For all analyses excluding
23andMe, the length of sequences of both parameters are set to be 10,

while for the analysis of 23andMe, it is set to be 5 to reduce the com-
putation workload caused by the confidential requirements of the
23andMe dataset.

Obtain PROSPER solution
For M populations, the objective function to minimize for pi-dimen-
tional vector of SNP effect, βi,i= 1, . . . ,M, is

Lðβ1, . . . ,βmÞ=
X

1 ≤ i≤M

ðβT
i ðRi + δiIÞβi � 2βT

i ri +2λikβik11Þ

+
X

1≤ i1<i2 ≤M

ci1i2kβ
si1 i2
i1

� β
si1 i2
i2

k2
2

where Ri is an estimate of pi-by-pi LD matrix based on a reference
sample from the i-th population, ri is the pi-dimentional vector of
GWAS summary statistics in the i-th population, β

si1 i2
i1

and β
si1 i2
i2

denote
the effect vectors for the SNPs shared across i1-th and i2-th populations
(the set of SNPs is denotedby si1i2 );δi, λi and ci1i2 are tuning parameters
as defined in above sections.

This optimization can be solved using coordinate descent algo-
rithms by iteratively updating each element in the vectors. We take
derivative for SNP k in i-th population, k = 1, . . . ,pi, i= 1, . . . ,M

∂L β1,. . .,βm

� �
∂βik

= 2 1 + δi +
X

i0≠i,1≤ i0 ≤M

cii0

 !
βik + 2λi

∂jβik j
∂βik

� 2 rik �
X

k 0≠k,1≤ k0 ≤ p

Ri,k0kβik0 +
X

1≤ i0 ≤M,s:t:k2Si,i0
cii0βi0k

0
@

1
A

where βik denotes the effect for SNP k in βi, rik denotes the summary
statistics for SNP k in ri, and Ri,k0k denotes LD between the SNP k and
the SNP k0 in Ri.

By solving
∂L β1 ,,βmð Þ

∂βik
=0 after the ðtÞ-th iteration, we can get the

updating rule for the ðt + 1Þ-th iteration

βðt + 1Þ
ik =

sign uik

� � �maxf0, uik

�� ��� λig
1 + δi +

P
1≤ i0 ≤M,s:t:k2Si,i0

cii0

where

uik = rik �
X

k0≠k,1≤ k 0 ≤p

Ri,k0kβ
ðtÞ
ik0 +

X
1≤ i0 ≤M,s:t:k2Si,i0

cii0β
ðtÞ
i0k

Super learning
After getting PRSs for all populations under all tuning parameter set-
tings, we further apply super learning to combine them to be trained
on the tuning samples to get the final PROSPER model and tested on
the validation samples. We use the function “SuperLearner” imple-
mented in the R package with the same name, and include three linear
prediction algorithms: lasso, ridge, and linear regression for con-
tinuous outcomes; and two prediction algorithms: lasso and linear
regression for binary outcomes. We did not include ridge for binary
outcomes due to the unavailability of ridge for binary outcomes in the
function. For the included algorithms which have parameters: (1) in
lasso, we use 100 values in lambda path calculated in the default set-
ting in glmnet package; (2) in ridge, we use a lambda path of sequence
from 1 to 20 incrementing by 0.1. We use Area under the ROC curve
(AUC) as the objective function for binary outcomes and thus use the
flag “method = method. AUC” in the function.
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Existing PRS methods
We compare five groups of PRS methods. The first group is: single-
ancestry method, which contains commonly known single-ancestry
methods, including CT, LDpred2, and lassosum2, that are trained from
the GWAS data from the target population. The second group is: EUR
PRS-based method, which is the three above single-ancestry methods
trained from EUR GWAS data. The third group is: weighted PRS, which
uses the weights estimated from a linear regression to combine the
PRSs estimated from the corresponding single-ancestry method from
all populations. The fourth group is: existing multi-ancestry methods,
which includes two recently published and well-performed multi-
ancestry methods, PRS-CSx and CT-SLEB. The last group is our pro-
posed PROSPER. For all algorithms that have tuning parameters or
weights, the optimal ones are determined based on predictive R2 or
AUC on tuning samples and finally evaluated on validation samples.

Below are detailed descriptions of the existing PRS methods used
as comparisons in this manuscript. In short, CT and CT-SLEB are
methods that use less-dependent genetic variants after a clumping
step in models. LDpred2 and PRS-CSx are Bayesian methods that can
account for LD among genetic variants. Lassosum2 and our proposed
PROSPER are penalized regression methods capable of modeling
genome-wide genetic variants andfitting themodel in a speedyway. As
for the threemulti-ancestrymethods, CT-SLEB and PRS-CSxmodel the
cross-ancestry genetic correlation using a multivariate Bayesian prior,
whileour proposedPROSPERuses a ridgepenalty to impose effect-size
similarity across pairs of populations.

CT is implemented in our analysis by using r2-cutoff of 0:1 in the
clumping step and then thresholding by treating P value-cutoff as a
tuning parameter and being chosen from 5 × 10−8, 1 × 10−7, 5 × 10−7,
1 × 10−6,…, 5 × 10−1, 1:0; P value is from GWAS summary statistics using
Chi-squared test.

LDpred2 is a PRS method that uses a spike-and-slab prior on
GWAS summary statistics and modeling LD across SNPs. We imple-
ment LDpred2 by the function “snp_ldpred2_grid” in the R package
“bigsnpr” version 1.12. The two tuning parameters in the algorithm
include: the proportion of causal SNPs, which is chosen from a
sequence of length 21 that are evenly spaced on a logarithmic scale
from 10�5 to 1; per-SNP heritability, which is chosen from0.3, 0.7, 1, or
1.4 times the total heritability estimatedby LD score regressiondivided
by the number of causal SNPs. We fix the additional “sparse” option
(for truncating small effects to zero) to FALSE.

lassosum2 is a PRS method that uses lasso regression on GWAS
summary statistics for a single ancestry. We implement lassosum2 by
the function “snp_lassosum2” in the R package “bigsnpr” version 1.12.
The two tuning parameters in the algorithm include: tuning parameter
for the lassopenalty,which is chosen froma sequenceof length30 that
are evenly spaced on a logarithmic scale from 0:01 × max

1≤ k ≤p
rk
�� ��� �

to

max
1≤ k ≤p

rk
�� ��� �

; and regularization parameter for LD matrix, which is

chosen from c(0.001, 0.01, 0.1, 1).

EUR PRS are the PRSs trained from EUR GWAS using the above
single-ancestry methods, CT, LDpred2, and lassosum2, that are then
applied to individuals of the target population. There is no need to
perform tuning for them because the models have been tuned in EUR
tuning samples. When computing scores for EUR PRS-based method,
we exclude SNPs that are not presented in the validation samples from
the target population.

Weighted PRS linearly combines the corresponding single-
ancestry method trained from all populations. The weights in the lin-
ear combination are estimated by a simple linear regression in the
tuning samples from the target population.

PRS-CSx is a Bayesian multi-ancestry PRS method that jointly
models GWAS summary statistics and LD structures acrossmultiple
populations using a continuous shrinkage prior. It has a further

step to linearly combine the posterior effect-sizes estimates for
EUR and the target population using weights in a simple linear
regression in the tuning samples from the target population. We
implement PRS-CSx using their Python-based command line tool
“PRS-CSx, available at https://github.com/getian107/PRScsx. The
parameter phi was chosen from the default candidate values,
1,10�2,10�4 and 10�6. Due to the package restriction, themodels are
fitted with only HM3 SNPs.

CT-SLEB is a multi-ancestry PRS method that starts from
clumping and thresholding, then uses Empirical-Bayes (EB) method
to estimate the coefficients of PRS, and finally combines PRS by a
super learning model. We implement CT-SLEB by codes available at
https://github.com/andrewhaoyu/CTSLEB. The three tuning para-
meters in the algorithm include: r2-cutoff and base size of the
clumping window size used in the clumping step, which are chosen
from (0.01, 0.05, 0.1, 0.2, 0.5) and (50 kb, 100 kb), respectively; and P
value cutoffs for EUR and the target population, which are chosen
from 5× 10�8,5 × 10�7,5 × 10�6, . . . ,5 × 10�1 and 1:0; P value are from
GWAS summary statistics using Chi-squared test.

Simulation analysis
The simulated data are generated in ref. 21. In brief summary, the data
were simulated under five assumed genetic architecture (as described
in the legends of Fig. 2 and Supplementary Figs. 2–5) and three dif-
ferent degrees of polygenicity pcausal = 0.01, 0.001, and 5 × 10−4. The
sample sizes for GWAS training data are assumed to be n = 15,000 and
n = 80,000 for the four non-EUR target populations; and is fixed at
n = 100,000 for the EUR population. PRS generated from all methods
are tuned in n = 10,000 samples, and then tested in n = 10,000 inde-
pendent samples in each target population.We randomly repeated the
simulation three times, and reported the average R2 for all candidate
methods.

Computational time and memory usage
The computational time and memory usage of PROSPER and PRS-CSx
are compared based on the analysis using simulated data on chro-
mosome 22. The analysis starts from inputting all required data into
the algorithms, such as summary statistics and LD reference data, and
ends with outputting the final PRS coefficients from the algorithms.
PROSPER requires an input of optimal parameters in single-ancestry
analysis, so we also include the step of running the single-ancestry
analysis, lassosum.The analyses are performedusing a single corewith
AMD EPYC 7702 64-Core Processors running at 2.0GHz. The reported
results are averaged over 10 replicates. The sample size for training
GWAS summary statistics is n = 15,000 for non-EUR populations and n
= 100,000 for EUR population. The sample size for the tuning dataset
is n = 10,000 for each population.

Real-data analysis
Training GWAS summary statistics are from 23andMe, GLGC, and AoU.
Tuning and validation of individual-level data are from 23andMe and
UKBB. LD reference data are from 1000G. Detailed descriptions of
those datasets are listed below.

1000Gdata.Weused samples infive populations, AFR, AMR, EAS,
EUR, and SAS from 1000 Genomes Project (Phase 3)51. The compo-
nents of the five populations are described in https://useast.ensembl.
org/Help/Faq?id=532.

23andMe data. We analyzed two continuous traits, heart meta-
bolic disease burden and height; and five binary traits, any CVD,
depression, migraine diagnosis, morning person and SBMN, using
GWAS summary statistics obtained from 23andMe Inc. Data on these
seven traits are available for all five populations: AA, EAS, EUR, Latino,
and SAS. The LD reference panels used for the five populations,
respectively, are unrelated individuals from 1000G of AFR, EAS, EUR,
AMR, and SAS origins. The tuning and validation are performed on a
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set of independent individuals of the corresponding ancestry from
23andMe participant cohort. Please see Supplementary Data 7 for
training sample sizes and Supplementary Data 8 for tuning and vali-
dation sample sizes. The data we used are preprocessed in ref. 21,
accessible from https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/3NBNCV. The details of the data,
including genotyping, quality control, imputation, removing related
individuals, ancestry determination, and the preprocessing of GWAS,
are described in pages 54–61 in its Supplementary Notes, and Man-
hattan plots and QQ plots were shown in its Supplementary Figs. 9–15.
For continuous traits, we evaluate PRS performance by the predictive
R2 of the PRS for residualized trait values obtained from regressing the
traits on covariates. For binary traits, we evaluated PRS performance
by the AUC by using the roc.binary function in the R package RISCA
version 1.057. To compare the PRS performance for two different
methods, we used the relative increase of logit-scale variance. The
logit-scale variance of binary traits is converted from AUC by the for-
mula σ2 = 2ϕ�1 AUCð Þ, where ϕ is the cumulative distribution function
of the standard normal distribution.

GLGC data.We analyzed four blood lipid traits, LDL, HDL, logTG
and TC, using GWAS summary statistics computed without UKBB
samples that are publicly available from GLGC. Detailed information
about the design of the study, genotyping, quality control, and GWAS
is described in ref. 37. The data we used are preprocessed in ref. 21 in
pages 61–62 in its Supplementary Notes, and Manhattan plots and QQ
plots were shown in its Supplementary Figs. 16–19. Data on the four
traits are available for all five populations: admixed African or African,
EAS, EUR, Hispanic, and SAS. The LD reference panels used for the five
populations, respectively, are unrelated individuals from 1000G of
AFR, EAS, EUR, AMR, and SAS origins. The tuning and validation are
performed on UKBB individuals (as described below) from the same
reference ancestry label as the LD reference panel. Please see Sup-
plementaryData 7 for sample sizes and the number of SNPs included in
the analysis.

AoU data. We analyzed two anthropometric traits, BMI and
height, using GWAS summary statistics trained from AoU. Data for the
two traits are available for three ancestries: AFR, Latino/Admixed
American, and EUR. The data we used are preprocessed in ref. 21,
accessible from https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/FAWEQK. The details of the data are
described in pages 61–62 in its Supplementary Notes, and Manhattan
plots and QQ plots were shown in its Supplementary Figs. 20 and 21.
The LD reference panel used for the three populations, respectively,
are 1000G unrelated individuals of AFR, AMR, and EUR origins. The
tuning and validation are performed using UKBB individuals (as
described below) from the same reference ancestry label as the LD
reference panel. Please see Supplementary Data 7 for sample sizes and
the number of SNPs included in the analysis.

UKBB data. We used UKBB data only for tuning and validation
purposes. The four blood lipid traits and two anthropometric traits
mentioned above have direct measurements in UKBB. The ancestry
label of UKBB individuals is determined by genetically predicted
ancestry, which are described in pages 62–63 in the Supplementary
Notes of the paper from ref. 21. Tuning and validation are based on R2

of the PRS regressed on the residuals of the phenotypes adjusted by
sex, age and PC1-10. Please see Supplementary Data 8 for sample sizes.
We note that for PRS we tested in UKBB validation samples, we use the
ancestry labels in UKBB (AFR, AMR, EAS, EUR, or SAS), instead of
ancestry labels in the GWAS training data, to report the R2 in the Fig-
ures, “Results”, and “Discussion” of this paper.

Extra tuning parameter for varying genetic distances
In the discussion, we investigated adding an extra tuning parameter to
accommodate adaptable distances between the AFR population and

others. Specifically, the pair-wise cij follows the formula

cij =
r × c if ior j =AFR

c ifi and j≠AFR

�

where r and c are tuningparameters; r takes values from0.5, 1,1.5; and c
takes the same sequence of candidate values as described in the first
paragraph of “Methods”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PRSs developed for traits in GLGC and AoUwill be released through
the PGS Catalog (https://www.pgscatalog.org) with publication ID
PGP000595 and score IDs PGS004622-PGS004686 upon publication.
Simulated genotype data for 600K subjects from five ancestries are
available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/COXHAP. GWAS summary-level statistics for five
ancestries from GLGC are available at http://csg.sph.umich.edu/willer/
public/glgc-lipids2021/results/ancestry_specific/. GWAS summary-level
statistics for three ancestries fromAoUare available at https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAWEQK.
GWAS summary statistics for the 23andMe discovery dataset could be
made available through 23andMe to qualified researchers under an
agreement with 23andMe that protects the privacy of the 23andMe
participants. Please visit https://research.23andme.com/collaborate/#
dataset-access/ for more information and to apply to access the data.
GRCh37 and GRCh38 reference genome data from Phase-3 1000 Gen-
ome Project (1000G) are available at https://www.internationalgenome.
org/data. Access to UKBB individual-level data can be requested from
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.
Supplementary Data files and Source Data files are provided with this
paper. Source data are provided with this paper.

Code availability
All codes for data analysis, including simulation and real-data analysis,
are posted through GitHub at https://github.com/Jingning-Zhang/
PROSPER_analysis (ref. 58). Codes, scripts, reference data, and toy
example to perform PROSPER are publicly available at https://github.
com/Jingning-Zhang/PROSPER (ref. 59). The majority of our statistical
analysis was performed using R 3.6.1 and R 4.0.2, and R packages:
bigsnpr_1.12.2, bigstatsr_1.5.12, doMC_1.3.8, iterators_1.0.14, inline_0.3.19,
RcppArmadillo_0.12.6.4.0, Rcpp_1.0.11, MASS_7.3-60, glmnet_4.1-8,
Matrix_1.6-1.1, SuperLearner_2.0-28.1, gam_1.22-2, foreach_1.5.2, nnls_1.5,
caret_6.0-94, lattice_0.21-8, ggplot2_3.4.3, stringr_1.5.0, readr_2.1.4,
bigreadr_0.2.5, optparse_1.7.3. The authors used Python 3.8.2 for PRS-
CSx. The authors used PLINK2 for computing PRS.
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